Cellular structure
Intracellular structures
The bacterial cell is surrounded by a lipid membrane (also known as a cell membrane or plasma membrane). This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. As they are prokaryotes, bacteria do not usually have membrane-bound organelles in their cytoplasm, and thus contain few large intracellular structures. They lack a true nucleus, mitochondria, chloroplasts and the other organelles present in eukaryotic cells. Bacteria were once seen as simple bags of cytoplasm, but structures such as the prokaryotic cytoskeleton and the localization of proteins to specific locations within the cytoplasm that give bacteria some complexity have been discovered. These subcellular levels of organization have been called "bacterial hyperstructures".

 Structure and contents of a typical Gram positive bacterial cell

Micro-compartments such as carboxysomes provide a further level of organization; they are compartments within bacteria that are surrounded by polyhedral protein shells, rather than by lipid membranes. These "polyhedral organelles" localize and compartmentalize bacterial metabolism, a function performed by the membrane-bound organelles in eukaryotes.
Many important biochemical reactions, such as energy generation, use concentration gradients across membranes. The general lack of internal membranes in bacteria means reactions such as electron transport occur across the cell membrane between the cytoplasm and the periplasmic space. However, in many photosynthetic bacteria the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane. These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria. Other proteins import nutrients across the cell membrane, or expel undesired molecules from the cytoplasm.
Most bacteria do not have a membrane-bound nucleus, and their genetic material is typically a single circular chromosome located in the cytoplasm in an irregularly shaped body called the nucleoid. The nucleoid contains the chromosome with its associated proteins and RNA. The phylum Planctomycetes are an exception to the general absence of internal membranes in bacteria, because they have a double membrane around their nucleoids and contain other membrane-bound cellular structures. Like all living organisms, bacteria contain ribosomes, often grouped in chains called polyribosomes, for the production of proteins, but the structure of the bacterial ribosome is different from that of eukaryotes and Archaea. Bacterial ribosomes have a sedimentation rate of 70S (measured in Svedberg units): their subunits have rates of 30S and 50S. Some antibiotics bind specifically to 70S ribosomes and inhibit bacterial protein synthesis. Those antibiotics kill bacteria without affecting the larger 80S ribosomes of eukaryotic cells and without harming the host.

Some bacteria produce intracellular nutrient storage granules for later use, such as glycogen, polyphosphate, sulfur or polyhydroxyalkanoates. Certain bacterial species, such as the photosynthetic Cyanobacteria, produce internal gas vesicles, which they use to regulate their buoyancy – allowing them to move up or down into water layers with different light intensities and nutrient levels. Intracellular membranes called chromatophores are also found in membranes of phototrophic bacteria. Used primarily for photosynthesis, they contain bacteriochlorophyll pigments and carotenoids. An early idea was that bacteria might contain membrane folds termed mesosomes, but these were later shown to be artifacts produced by the chemicals used to prepare the cells for electron microscopy. Inclusions are considered to be nonliving components of the cell that do not possess metabolic activity and are not bounded by membranes. The most common inclusions are glycogen, lipid droplets, crystals, and pigments. Volutin granules are cytoplasmic inclusions of complexed inorganic polyphosphate. These granules are called metachromatic granules due to their displaying the metachromatic effect; they appear red or blue when stained with the blue dyes methylene blue or toluidine blue. Gas vacuoles, which are freely permeable to gas, are membrane-bound vesicles present in some species of Cyanobacteria. They allow the bacteria to control their buoyancy. Microcompartments are widespread, membrane-bound organelles that are made of a protein shell that surrounds and encloses various enzymes. Carboxysomes are bacterial microcompartments that contain enzymes involved in carbon fixation. Magnetosomes are bacterial microcompartments, present in magnetotactic bacteria that contain magnetic crystals.



Carboxysomes are protein-enclosed bacterial organelles. Top left is an electron microscope image of carboxysomes in Halothiobacillus neapolitanus, below is an image of purified carboxysomes. On the right is a model of their structure. Scale bars are 100 nm.

Reactions:

0 comments:

Post a Comment

12 Ways to Prepare for Hepatitis C Treatment

Subscribe to RSS Feed Follow me on Twitter!